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An analytic solution of a model problem of the flexural vibrations of a beam on an elastic Winkler foundation due to the front 
of a line load which moves along it is constructed. Quantitative results are presented for the special ease when the velocity of 
the front is constant and the linear load is a step function. It is shown that a critical velocity of motion of the load exists and 
that, when this is exceeded, the elastic vibrations increase considerably. In this case, the dynamic range of deflection of the beam 
may be more than twice the magnitude of the displacement under the corresponding static load. The value of the critical velocity 
is determined by the mechanical properties of the beam and foundation and can be calculated using the ideal theory of an infinite 
beam. The amplitude of the deflection wave on approaching the critical velocity becomes larger as the length of the beam increases. 

The analytic solution of a model problem of the flexure of an infinite beam lying on a continuous 
homogeneous elastiLe foundation due to a concentrated load moving along it at a constant velocity is 
well known [1, 2]. "Ilais solution is constructed in the form of a travelling wave and it has been shown 
that a critical velocity of the motion of the load exists and resonance amplification of the wave occurs 
when this velocity is reached. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

Consider a beam ,an an elastic base. A source of a line load with constant intensities Q1 and Q0 before 
and after the source, respectively, moves along this beam according to the law x = x.(t), x'.(t) = V. It 
is assumed that the cross-section and the modulus of elasticity E of the beam are constant and that its 
ends are free. According to Winkler's hypothesis [3], the reaction of the elastic foundation r is propor- 
tional to the deflectiion u(x, t) of the axis of the beam: r = -ku, where k is the stiffness of  the foundation 
or the bedding coefficient [1]. 

In order to generalize the problem, we shall assume that the decay of vibrations in an elastic system 
is due to an internal resistive force F/which is proportional to the rate of displacement of the beam: 
F/=  -Tlaulat, where ~! is a coefficient of proportionality which characterizes the internal friction. It 
is supposed that, up to the engagement and start of the motion of the source at the instant of time 
t = 0, the beam is elt rest and undeformed. The differential equation of the curved axis of the beam, 
together with the boundary and initial conditions, then takes the form 

a2u a 2 (EJ~+ au =F(x, t )=[QoO(x.-x)+Q~O(x-x . ) lO(t)  mTtr +  -Tt-D- J (1.1) 

x = 0 ,  x = l :  uxx=u.~x=O; u(x, 0 ) = 0 ,  u,(x,O)=O (1.2) 

where x is the longkudinal coordinate, J and I are the moment of inertia of the planar cross-section of 
the beam and the le, ngth of the beam, respectively, m is the mass per unit length of the beam, R is the 
radius of  curvature of its curved axis and O is the Heaviside function. If the treatment is confined to 
small deflections, we can put 1/R = u~x. 

2. T H E  S E L F - S I M I L A R  S O L U T I O N  

If the velocity of  motion of the source is constant and the length of the beam is infinite, the self- 
similar variable ~ = x - Vt can be introduced and we can put u(x, t) = f(~). From (1.1) and (1.2), we 
then obtain 
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f ' ""  + 2bf'" - af" + o)2f = q00(-~)  + qlO(~) 

f"(+o.) = f '"(+o.) = 0 

2b = mV2 (0 2 k __~ llV 
F_.J" = ~ "  q °=  ' q l = Q l  a =  ' E d '  EJ 

(2.1) 

For simplicity, we shall neglect the losses of  elastic energy, that is, we put T! = a = 0. We obtain the 
solution of  (2.1) by matching the deflections ahead of the source and behind it on the travelling wave 
front (~ = 0). Conditions for the smooth matching of  f up to the third derivative must be ensured [3]. 

We denote the self-similar solution, corresponding to ql = 0 by O(~,ff0, where f0 = Qo/k. From (2.1), 
we then find 

10+ ;, o 
' , = o  

[ ] I e; ~ Ot - 0 + ( ~ )  = : l : c o s l ~  + s i n l ~  

4 E J  ' = 4 E J  ' 

(2.2) 

This is valid for V < V~. When V---> V~, we have tx --> 0, O(~,) ---> oo, if ~ ~ 0. If, however, V > Vc, a 
self-similar solution does not exist. 

We next analyse the deflection of the beam when ql ~ 0. 

Theorem 1. The self-similar solut ionfwhen ql ~: 0 is expressed in terms of  the normalized deflection 
of  the beam when O when ql = 0 according to the formula: ( / - f l )  = (f0 -fl)~(~),f~, = Qdk. 

For the proof, consider the function {p = f - f 1 .  From (2.1), we obtain 2btp" + o~'{p + i f "  = (q0 - 
q l )~ ( -~ ) ,  that is, the problem with Ql ~ 0 is reduced to the previously investigated problem when Q1 
= 0 but with Q0 replaced by Q0 - Q1. 

It follows from the theorem thatf(~) + f(--~) = f0 + fl,  f(0) + (f0 + fO/2. 
A plot of  the analytic solution is shown in Fig. 1, where f = ( f- f l ) / ( fo - f l ) ,  ~- = 4(m/(4EJ))Vc~. 

Curves 1-3 correspond to values of V/V c equal to 0, 0.9 and 0.99, respectively. It is clear that the 
normalized deflection .~(~) - 1/2 is an odd function of ~. The external values O., which are attained at 
the points ~., are distributed according to the law 

IP-~( ,J )=arc tg(~/oO-x j<o,  j =  1,2,3 .... 

O(P~(j.. ) ) = I + ~ (-1)J+J exp((x~(,J._ ))[1 + (1~ / 002 ]~ (2.3) 
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When ~. > 0, we: have 

The equality 

~(,/) = ~ ( ~ -  j )  (2.4) 

holds in the case of a static load (V = 0). 
As the critical velocity (V = Vc) is approached, the expression on the left-hand side of equality (2.4) 

tends to the limit ~z(1/2 -j)/~[2. As  the velocity V increases, the extremal points approach the source 
(~ = 0). In view of (2.3), the distance between all the neighbouring extremal points, with the exception 

• 0+I) .U) of those closest to the source, is the constant quantity: I ~. - ~. I = x/l~. 
For j = 1, we have I ~0)+ _ ~0.)_ I = 2[x - arctg(13/a)]/l~. AS the velocity V increases, the distance 

between all the neighbouring antinodes contracts to a value of  rj[~l(m/(2EJ))Vc]. At low velocities 
"~ ~c, the amplitude normalized values of the wave of the deflections ~.  are close to unity, that is, 

the static load approximation is acceptable. The effect of a dynamic load shows up most dearly when 
V--* Vc and, then, l O, I --~ 00. 

The distribution of the nodes of the flexural wave, that is, the zeros of the function 0(~) when 
> 0: O(~0q) ) = 0, is traced in a similar manner to its antinodes. From (2.2), we obtain 

3. A B E A M  OF F I N I T E  L E N G T H  

A self-similar elastic wave exists for a source velocity V < V~ in the case of an infinite beam. When 
the beam length is finite, this solution will be acceptable far from its ends, if ¢x/~. 1, I~/~" 2~. When 
these conditions ale violated, the solutions must be investigated taking account of the reflection of elastic 
waves from the boundaries x = 0, x = I. 

Theorem 2. The boundary-value problem (1.1), (1.2), which describes the vibrations of a beam with 
an arbitrary moving line load F, can only have a unique solution for small deflections. 

Proof. Let us assume that two different solutions exist. Then, for their difference, we have 

rnSu,, + ~Sut + k6u + EJSu,xxx : 0 (3.1) 

8u(x, 0), 8u,(x, O) = 0 

8u'(O, t) = 8u'"(O, t) = O, 8u"(l, 0 = 8u"( l ,  t) : 0 
Let us multiply Eq. (3.1) by 5u t and integrate with respect tox  from 0 to I and with respect to t, from 

0 to t, using the boundary and initial conditions. As a result, we obtain a relation from which it follows 
that 5u = 0. 

Since (1.1) is a lJaaear partial differential equation with constant coefficients, its solution is conveniently 
sought in the foma of Fourier series in the eigenfunctions of the homogeneous (F = 0) stationary 
problem. Formally, the solution can be found by the method of separation of variables 

u(x,t): ~. Xt(x)vk(t), F(x,t)= ~. Ok(t)Xt(x) (3.2) 
k:O k:O 

Substituting (32)  into (1.1) and (1.2), we obtain an eigenvalue boundary-value problem for the 
eigenvalues y = ~, (n = 0, 1, 2 , . . . ) .  

=Y~X,. m~,+~,+(k+F2yd)v, =~, 

x : 0 ,  x : l :  . . . . .  0; t = 0 :  : v  n Z n  = ~ n  ffi V n ' : 0 

(3.3) 
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The  general  solution has the form 

Z(x) = Achyx + Bshyx + Ccosyx + Dsinyx; A, B, C, D = const 

Using the boundary  conditions, we obtain the characterist ic equat ion chixcosix = 1, where  Ix = ?/. 
The  discrete spectrum (Ix = Ix,,): Ix0 = 0, Ix2~-I ~ [n(4k - 1)/2, 2nk], Ix2k e [2nk, n(4k + 1)/2], k >> 1. 

_ o =_ n(n + 1/2). I f n  -> 1, t h e n ~  Un 
When  n ~> 1, all the eigenvalues are single. 
If, however,  n = 0, the root  Ix is double  and there  are two independen t  eigenfunctions which corres- 

pond  to it. It follows f rom (3.3) that  Z0 = Gx + H, where  G, H = const. One  of  the two eigenfunctions 
can be set equal  to a constant: ~01 m A01 = const. The  o the r  (Z02) is found f rom the condit ion that  it 
is o r thogonal  to  X01. 

It can be shown that  all o f  the eigenfunctions ~ ,  which correspond to different  eigenvalues Ixk, 
SoZk(x)dx = 1 on  them, we are or thogonal .  On  additionally imposing the normalizat ion condit ion t 2 

obtain 
Zn(x) = A',[ch¥.x + cosy,,x - Cn(shy~ + siny.x)] (3.4) 

C', = (chg', - cosixn)/(shix. - sinixn) 

A', ffi {(l + c + (1 - c 2)jr2 - 2 G  (N3 + 

N t =l[Sh2ix ' ,  + ~  , Nz + ~  
L 4IX', ffi L 4g', 

N 3 = l 1 - c o s  2lJ., N4 c h  211" - 1 
41.t, ' = 4IXn , n ~> 1 

X , 0 1 ( x ) = A 0 1 - - I / ' x / I ' ;  go2(X)=AO2(I-2x/[), A 0 2 = 3 / ~  (3.5) 

, The  eigenvalues ~ ,  obta ined numerical ly (n I> 1) are: IX1 = 3rd2 + 1.76551 × 10 -2, IX2 = 5rd2 - 
7.7763 x 10 -4, IX3 = 7rd2 + 3.2712 × 10 -5, IX4 = 9rd2 - 1.9412 × 10 -6, I IX,, - n(n + 1/2) I < 6 × 10 -7 when 
n ~> 5. The  coefficients A', and Cn are presen ted  below 

n 1 2 3 4 5 6 7 8 9 

(A~'~'-  I ) x  106 0 - I  -1 - I  -1 -209 10782 9495 8493 

(C n -  l ) x  106 -17498 777 -34  I - I  0 - I  0 - !  

n 10 II 12 13 14 15 16 17 18 

(A=~/~- I ) x  106 7666 6992 6427 5947 5533 5173 4858 4578 4329 

IC,, - !1 < 5 . 1 0  --7 when n ~ I0. 

Plots o f  the eigenfunctions are shown in Fig. 2. In view of  the double degeneracy of  the least eigenvalue 
IX0 = 0, the num ber  n = 0 which corresponds  to it is labelled as 0, and 0, ,  for  the first (Z01) and the 
second (Z02) eigenfunctions, respectively. 
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It is clear that, when n = 0., the eigenfunction is even with respect to the centre of the beam (x = 
1/2) and does not have zeros. Subsequently, each eigenfunction following in number (0.., 1, 2, and so 
on) changes its parity into the opposite parity and additionally acquires some zeros. 

Having the ortho:aormal basis ~(x) ,  m construct the solution of the general problem on the displace- 
ments of beams, it is still necessary m find the coefficients of the expansion with respect to the basis 
vn(t). It can be shown that, in the general case for an arbitrary line load F(x, t) 

| t 

v, (t) -- ml~¢01 ~ K(t - x)O,(x)dr  (3.6) 

( I] ..'~ [sinwn~. ~] ~vl¢ 
K(~)  = exp - - - ~  x 

L 2m ) ishlynl~. ~ I ]  c 

¥ ,  = ¥~ 01c) = 0 
m 

l 

O.(t) = ~ F(x, OX,(x)~ 
0 

Next, in order to simplify the analysis, we consider the special case of the equilibrium motion of a m u l ~  x. -- 
It, V = const with a ]~ne load F(x, 0 which differs from the corr~ponding quantity defined in (1.2) by the factor 
l$(t) which takes account of the possibility of the di~ngagement of the load when the sour~ leaves the beam at 
the right-hand end: If(t) = I if the load does not disappear when x, > I and l$(t) --- ~ l  - x.) if the load is fully 
disconnected when the source leaves the beam. 

After calculating the integrals, we obtain 

[AoI[Vt(Qo-QI)+Qli]. t ~ ; t . = l / V  
q) Ol (t) ) 

[~d3oQol, t ~, t,, n = O, 

<~o2 (t) = { Ao21(QOoQi X t - t .  )2. t " t. 
t;Dt., n=O** 

=~O0[a(Vt)-o~(O)l+~[a(l)-a(W)], ~. ";I 
O.(t) [~oQo[a(l)_(x(O)]. x,  ~l. n;ml 

,g 

a(x)  m ~ X. (x )dx+a(O)= A.[shynx+sin¥.x-C.(ch'f .x-cos¥.x)] l¥. 
o 

where ~0 = 1, i f  the load remains when the source leaves the beam and ~ -- 0 otherwise. 
For the coefficient v01(t) of the expansion with respect to the first eigenfunction, we obtain 

m¥oV01 ( t )  = AOl {(Q0 - QI ) lul  ( s , t )  + Q l l l  I ( s , t ) +  PoQ01[ !1 ( t , t ) -  I I ($,t) l);  

!! (s.t) = f~[ !1 ! ( t -  s ) -  !!! (t)l 

lu!(s,t)= ~ K(t.-'c)V'r,d't = V s- Klt)] , 

0 ¥ .  

I n = O; O ( O ) = -  

2 f [  - '  s = t O ( t . - t ) + t . O ( t - t . ) .  [1= ¥ .  !+ 

2mya J 
It is obvious that e~O) = O. Next, when n >~ 1, we have c~(/) = 0 since the constant is an eigcnfunction and they 

are orthogonal in the space L2[0 ,/]. 
The second coefficient of the expansion of the solution v02(t) in the basis of orthonormalized eigenfunctions 

Zn(h) has the form 

m¥OV02 = AO2(Q 0 - QI){I,I($. t) - !~2($. t)/1} 
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1~2 (s,t) Ki t  - X)(Vx) 2 dx = Vlsl,, I ( s , t ) -  r(s,t)} 
o 

X 

r ( s , t )  = I lel (x,t)a~ = V{sq~,, ( s , t ) -  Hn(s,t ) -  Ho(s,t)} 
0 

o my.  ¥ .  j 

Hn(s,t)= i On(X,t)d'~=n -~--/ll(t)+ tl ##n(S,t)+sK(t)_/l(Sd) 1 
o ,n¥. ¥.  ¥.  j 

The coefficients of the expansion vn(t) when n ~> 1 are determined as 

An + 
rnynv . (t) = (Qo - QI ) - -  112 (s,t) + ! 4 (s,t) - C n It~ ( s . t ) -  t i  (s.t)]} 

~n 

1-122 ( -  V,I - s)e -Ynvs + 122 ( -  V,t) - 122 (+ V,t) + 122 (+ V,t - s)e Ynvs 1, 12 (s, t) 

a(V)= rl + Yn v 
2rayn Yn 

122 (V,,)= exP[~t ! (2m)][COS+n , + a(V)sin ynt | 
a tV)+l 

13(s,t)= 2-~n {122(-V,t-s)e-YnVs-122(-V,t)+ 122(+V,t-s)eYn~' -122(+V.t)} 

!,~ (s,t) = [ I ± (s, ±)cos y ,  Vt + ! ~ (s,t)sin Yn Vt] / Yn 

l+(s,t)=[cCP~(s,t)~dOt(s,t)]l(c2 +d 2) 

2 V 2 2( ,q /f,~nV / 
t2m~.) t v.  ) t 2 " ¥ .  A v .  ) 

• ± (s, t) = ~I '± (t - s ) -  ~I "± (t) 

¥. J 

a+(t)=coSYnVt, a - ( t )=s inYnVt  

The analytic solution obtained above is quite complex, and certain special cases can be considered. They are 
useful for testing the analytic and numerical calculations of more general problems. Let the load be homogeneous:  
Q0 = Q1- If we denote  the corresponding solution by uo(x, t), then Vn(t) --- 0 when n ~> 1, v02 ------- 0 and 

mV0Vo! = A01. I. {20 {~0/I (t,t) + (1 - 1~o)1! (s,t)} 

Uo(X,t) = fo[U(p)-  u(t)] 

where p = (1 - ~0)(t - s); s = t when t ~< t., s = t. when t ~> t. and f0 = Qo/k is the amplitude of the elastic wave. 
It  can be shown that the solution of the general problem in the case of an inhomogeneons line load ({20 # Q1) 

will tend to it with time. 
In the calculations, unless otherwise stated, we have taken V/Vc = 0.73; Q1 = 0,11 = 0; EJ/(k. rt) = 1.16 x 10-6; 

mV2(k/2) = 2.2 × 1073. The calculations showed that it is sufficient to use 15-20 terms of the series (3.2). 
The effect of the parameter 11, which characterizes the internal friction of the elastic medium, on the displacement 

of the beam is shown in Fig. 3. Here, V/Vc = 0.5 and I~ 0 = 0. The dependence of the deflection on the longitudinal 
coordinate x and on time t is shown respectively, for Vt/l = (1 + 2 × 10-41///)/3 and for the middle part  of the 
beam (x = 1/2). Curves 1 and 2 correspond to values of the parameter  VI = ~l/raVof 0 and 10, respectively. When 
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V1 -- 10, the deflection u is significantly smoothed out, approaching the static deflection when u = fl at a sufficient 
distance in front of the source and u = f0 behind it. The amplification of the vibrations when Vt/l ~ 1 is due to the 
removal of the load when the source flies off with it. If ~ is of the order of unity, the calculated curves are close 
to those for deflections of a beam when there is no friction 01 = 0). 

Figures 4 and 5 are representations of the deflection as a function of the different modes of the front of the 
load, "subsonic" (V < Vc), "transonic" (V ~ Vc) and "supersonic" (V > Pc). Curves 1-3 correspond to values of 
V/Vc of 0.5, 1.0 and 1..5. 

Figure 4 shows the dependence of the deflection on time. The solid curves correspond to ~ = 0 and the dashed 
curves to 130 = 1. 

The distribution of the deflection along the beam is shown in Fig. 5. It is seen that, regardless of the acceleration 
mode, the maximum deflection of the beam is found behind the load front. On changing to "supersonic" conditions, 
there is an increase in the amplitude of the elastic wave. It may be more than twice the magnitude of the displacement 
of the beam under static loading. The displacements ahead of the front are an order of magnitude or more smaller 
than the deflections behind it. Under supersonic conditions, the deformations in front of the source are reduced 
considerably. However, intense vibrations now occur behind it. An unlimited increase in the amplitude of the elastic 
wave on attaining the critical velocity, which is predicted by the self-similar solution, is not observed. 
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